SIGRAFLEX® UNIVERSALPRO

Impregnated TA Luft-Compliant Sealing Sheet
Made from Natural Graphite with
Tanged Stainless Steel Reinforcement

Expanded Graphite

SIGRAFLEX® UNIVERSALPRO

Our Contribution to Environmental Protection

SIGRAFLEX® UNIVERSALPRO

is an adhesive-free graphite sealing sheet made from flexible graphite foil with one or two tanged 316 (L) stainless steel reinforcements. The sealing sheet is impregnated to reduce leakage and improve handling.

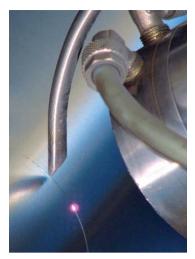
Tanged stainless steel reinforcement Cross-section Impregnation Tanged stainless steel reinforcement

Applications

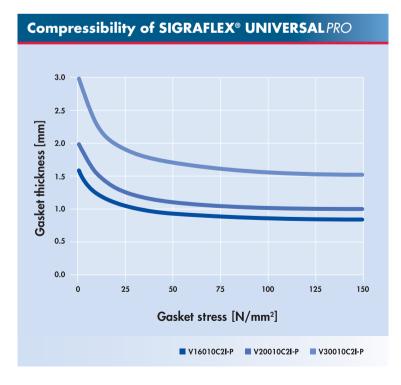
- ► For all common pipework and vessel flange designs
- Recommended for one-piece gaskets up to 1500 mm outside diameter; for diameters over 1500 mm for example two-layer structures with segmented sections and staggered joints
- ► For internal pressures ranging from vacuum to 100 bar
- ► For corrosive media
- Suitable for a broad range of temperatures from -250°C to approx. 550°C; for applications at more than 450°C, users should request our advice
- ► Gaskets for the chemical, petrochemical and refinery industries
- Steam pipework in power stations and heating facilities
- ► Existing plants

Properties

- ► High blow-out resistance and high mechanical strength
- Long-term stability of compressibility and recovery
- ► Good chemical resistance
- ► Very high fault tolerance
- High operational reliability and excellent oxidation resistance
- Good scratch resistance; antistick finish due to special impregnation
- ► No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- ► High thermal shock resistance
- ► No aging or embrittlement, owing to absence of adhesives or binders
- ► Asbestos-free, no associated health risks


Approvals

- ► TA Luft (VDI 2440/VDI 2200) for all thicknesses
- ► Fire safety according to API 607
- Blow-out resistance (TÜV at 2.5 times the nominal pressure)
- ► BAM oxygen
- ▶ DVGW (DIN 3535-6)


Assembly instructions

For assembly, use dry and undamaged gaskets only. Wet graphite gaskets must not be fitted unless first dried completely. The sealing faces must be clean, dry and free from grease. Do not use release agents! Position the gasket centrally and avoid any mechanical stress during assembly. An assembly aid can be used if necessary. To help assembly in difficult positions, the gasket may be fixed by using a commercially available adhesive. However, the adhesive should be applied sparingly at a few points only. Align the flanges as plane-parallel as possible. Firstly hand tighten the bolts, then in a cross-wise order, tighten the bolts to about 50 % of the maximum torque value, in the second stage to about 80% and to the full value in the third stage. All bolts must be tightened to the specified bolt load, the torque must be checked repeatedly. Our detailed assembly instructions are available on request.

Our patented, overlap-free laser welding process allows sheets of up to 1500 mm without leakage channels.

Forms supplied

SIGRAFLEX UNIVERSAL PRO sheets are available in the following dimensions and type designations:

Dimensions in mm	Types
1500 x 1500 x 1.6	V16010C2I-P
1500 x 1500 x 2.0	V20010C2I-P
1500 x 1500 x 3.0	V30010C2I-P
The sheets can also be supplied	in dimensions
of 1000 x 1000 mm.	

Material data of SIGRAFLEX® UNIVERSALPRO								
Material type		V16010C2I-P	V20010C2I-P	V30010C2I-P				
Thickness	mm	1.6	2.0	3.0				
Dimensions	m	1.	5 x 1.5 / 1.0 x 1	.0				
Bulk density of graphite	g/cm³		1.0					
Ash content of graphite (DIN 51903)	%		≤2.0					
Total chloride content	ppm		≤ 25					
Reinforcing steel sheet details		Tang	ed stainless steel	sheet				
ASTM material number			316 (L)					
Thickness	mm	1	0.1	0				
Number of sheets		1	1	2				
Residual stress (DIN 52913) $\sigma_{D 16 h, 300^{\circ}C, 50 \text{ N/mm}^2}$	N/mm ²		≥ 45					
Gasket factors (DIN E 2505 / DIN 28090-1) Gasket width b₀=20 mm								
σ _{VU/0.1} at an internal pressure of 10 bar	N/mm²	10	10	12				
16 bar	N/mm^2	12	12	14				
25 bar	N/mm ²	15	15	1 <i>7</i>				
40 bar	N/mm ²	17	17	19				
m ~	N/mm²	1.3 180	1.3 160	1.3 140				
σ νο σ _{BO at 300°⊂}	N/mm ²	160	140	120				
Compression factors (DIN 28090-2)	1 4/ 111111	100	140	120				
Compressibility ϵ_{KSW}	%		35 - 45					
Recovery at 20°C EKRW	%	4 - 6						
Hot creep £wsw	%	< 5						
Recovery at 300°C EWRW	%	3 - 6						
Young's modulus at 20 N/mm² (DIN 28090-1)	N/mm²	900						
ASTM "m" factor		2.5						
"y" factor	psi		2000					
Compressibility ASTM F36A-66	%		35 - 45					
Recovery ASIM F36A-66	%	15 - 25						
The gasket factor conversion formulas		$k_{o} \cdot K_{D} = \sigma_{VU} \cdot b_{D}$						
as per AD Merkblatt B7 are as follows:			$k_1 = m \cdot b_D$					

Definitions

Definition	S		
$\sigma_{\text{VU/0.1}}$	Minimum gasket assembly stress needed to comply with	k_o	In mm, factor for gasket assembly stress
	leakage class L 0.1 (according to DIN 28090-1)	k_1	In mm, factor for gasket stress in service
	Recommended gasket assembly stress: $\geq 20 \text{ N/mm}^2 \text{ up to } \sigma_{\text{BO}}$	K_{D}	In N/mm ² , max. gasket stress-bearing capacity
$\sigma_{\scriptscriptstyle BU}$	Minimum gasket assembly stress in service, where $\sigma_{\scriptscriptstyle BU}$ is the		under assembly conditions
	product of internal pressure p and gasket factor m for test and	$\mathbf{\epsilon}_{\sf ext{ iny KSW}}$	Compression set under a gasket stress of 35 N/mm ²
	in service $(\sigma_{BU} = p \cdot m)$	$\mathbf{\epsilon}_{\tiny KRW}$	Gasket recovery after reduction in gasket stress from
$\sigma_{\text{\tiny VO}}$	Maximum permissible gasket stress at 20°C		35 N/mm ² to 1 N/mm ²
σ _{BO, 300°C}	Maximum permissible gasket stress in service	$\epsilon_{\sf wsw}$	Gasket creep compression under a gasket stress of
m	$\sigma_{\scriptscriptstyle BU}$ / $p_{\scriptscriptstyle i}$		50 N/mm² at 300°C after 16 h
"m" facto	r Similar to m, but defined according to ASTM, hence different value	$\epsilon_{\sf wrw}$	Recovery after reduction in gasket stress from
"y" factor	Minimum gasket stress in psi		50 N/mm² to 1 N/mm²

The percentage changes in thickness of $\epsilon_{\mbox{\tiny KSW}},\,\epsilon_{\mbox{\tiny KEW}},\,\epsilon_{\mbox{\tiny WSW}}$ and $\epsilon_{\mbox{\tiny WRW}}$ are relative to the initial thickness.

Gasket factors of SIGRAFLEX® UNIVERSALPRO according to DIN EN 13555													
L	PN	e _{G0}	Q _{min/L}		Q _{Smin}	ı/L		e _{G0}	Q _{min/L}		Q _{Sm}	in/L	
				Q _A = 20	Q _A =40	Q _A = 60	Q _A =80			Q _A = 20	Q _A =40	Q _A =60	Q _A =80
10-1	10	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	16	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	25	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	40	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-2	10	2	< 10	< 10	< 10	< 10	< 10	3	10	< 10	< 10	< 10	< 10
10-2	16	2	10	< 10	< 10	< 10	< 10	3	12	< 10	< 10	< 10	< 10
10-2	25	2	13	< 10	< 10	< 10	< 10	3	15	10	< 10	< 10	< 10
10-2	40	2	16	< 10	< 10	< 10	< 10	3	18	12	< 10	< 10	< 10

Relaxation ratio Par								
PQR	RT		150°C		300°C			
Q _s e _{G0}	2	3	2	3	2	3		
30	0.97	0.97	0.91	0.92	0.88	0.90		
50	0.99	0.98	0.96	0.96	0.95	0.95		
200/200/160	1.00		0.99		0.99			
180/160/140		1.00		0.99		0.99		

Max. allowable gasket stress Q _{Smax}								
Q _{Smax}	RT	150°C	300°C					
2	> 200	> 200	160					
3	180	160	140					

Secant unloading modulus E _G								
E G	R	T	150)°C	300°C			
Q _s e _{G0}	2	3	2	3	2	3		
20	392	358	435	447	471	414		
30	565	629	675	649	657	586		
40	827	789	996	941	849	811		
50	1123	1265	1010	1136	1191	1300		
60	1230	1326	1308	1314	1380	1191		
80	1710	1786	1938	1836	1532	1747		
100	2090	2328	2117	2255	2138	1949		
120	2461	2679	2135	2674	2412	2893		
140	2495	3182	2723	3149	2482	2981		
160	2811	3293	2960	3675	2448			
180	3194	4090	3006					
200	3661		3106					

Definition	ns	
E_{\scriptscriptstyleG}	[MPa]	Secant unloading modulus of the gasket
e_{G0}	[mm]	Gasket thickness
L	[mg/(s·m)]	Leakage class
PN	[bar]	Nominal pressure
Q_A	[MPa]	Gasket assembly stress
P_{QR}		Relaxation ratio for stiffness C=500 kN/mm
$Q_{\min/L}$	[MPa]	Minimum assembly gasket stress
Q_s	[MPa]	Gasket stress
$Q_{Smin/L}$	[MPa]	Minimum gasket stress in service
Q_{Smax}	[MPa]	Maximum allowable gasket stress
		before damage occurs
RT		Room temperature

RT Roc Further values on request.

Product overview			
Product		Characteristics	Recommended applications
SIGRAFLEX® FOIL FC/Z/APX	A	Flexible, continuous	-250°C to approx. 550°C; for compressed packings, spiral-wound and kammprofile gaskets
SIGRAFLEX® STANDARD LCI		Unreinforced, impregnated	Raised-face flanges; enamel or glass flanges; highly corrosive media
SIGRAFLEX® ECONOMY VC4	■	Reinforced with bonded s/s foil	Pumps; fittings; gas supply; waste gas pipelines
SIGRAFLEX® UNIVERSAL VC2I	•	Reinforced with tanged s/s [™] foil, impregnated	Pipework and vessels in the chemical and petrochemical industries and in power stations
SIGRAFLEX® UNIVERSAL PRO VC2I-P	•	Reinforced with tanged s/s [™] foil, impregnated	For TA Luft* applications; for pipework and vessels in the chemical and petrochemical industries and in power stations
SIGRAFLEX® SELECT V16010C3I	•	High-integrity s/s [™] foil reinforcement, impregnated	For TA Luft* applications; raised-face flanges; pipework in the chemical and petrochemical industries
SIGRAFLEX® HOCHDRUCK VZ3I	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the petro-/chemical industries and in power stations
SIGRAFLEX® HOCHDRUCK PRO VZ3I-P	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet for TA Luft' applications, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical and petrochemical industries and in power stations
SIGRAFLEX® MF VZ2MF	•	High-integrity laminate made of graphite, s/s and PTFE	Maximum requirements for sealability (TA Luft*), safety, chemical resistance and process hygiene; sealed joints in the chemical and petrochemical, pharmaceutical and food industries
SIGRAFLEX® EMAIL VZ3E	-	High-integrity s/s** foil reinforcement	PTFE-envelope gaskets in enameled pipework, vessels, stub connections, etc.

Forms supplied: ▲ roll or tape ■ sheet material ● gasket with inner eyelet, for applications requiring TA Luft approval

® registered trademark of SGL Group companies

11 2009/0 5NÄ a Printed in Germany

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".

Expanded Graphite SGL TECHNOLOGIES GmbH

Werner-von-Siemens-Str. 18 86405 Meitingen/Germany Phone +49 8271 83-2276 Fax +49 8271 83-2419 expandedgraphite@sglcarbon.de www.sigraflex.eu

Your distributor in Austria: POLYFLON GmbH

Gaadnerstr. 36 b 2371 Hinterbrühl/Austria Phone +43 2236 26-718 Fax +43 2236 46-811 office@polyflon.at www.polyflon.at

^{*}TA Luft: German Clean Air Act ** s/s: stainless steel